Computational Model of a Novel, Two-Cup Horizontal Wind-Turbine System

نویسندگان

  • Greg Mowry
  • Robert Erickson
  • John Abraham
چکیده

Typical wind turbine systems are sufficiently large so as to require extensive physical space for their installation and operation. These requirements preclude the use of turbines in crowded, urban environments. On the other hand, smaller turbine systems may find practical application as rooftop units, installed atop tall buildings. Such rooftop units must be much smaller than their ground-based counter parts. In this paper, a new, vertical-axis wind turbine has been analyzed by using a two-step numerical procedure. The design consists of two turbine cups that are positioned with 180 o separation. In the first step of the analysis, a complete numerical simulation of the wind-flow patterns across the cup with wind impacting angles spanning 360 o was completed. From these calculations, it was possible to determine the functional relationship between rotational forces, relative wind speed, and the relative angle of wind approach. The second stage of numerical procedure was a time-wise integration of the instantaneous angular velocity of the wind turbine. These calculations were carried out until the turbine had achieved quasi-steady motion. The corresponding cycle-averaged angular velocity (terminal angular velocity) was then determined. This second stage was completed for a wide range of wind speeds so that a functional dependence of the turbine rotational velocity on the wind speed could be found. This functional relationship enables a user to predict the operational response of the wind turbine based on a known and steady wind velocity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady aerodynamic analysis of different multi mw horizontal axis offshore wind turbine blade profiles on sst-k-ω model

To indicate the best airfoil profile for different sections of a blade, five airfoils; included S8xx, FFA and AH series was studied. Among the most popular wind power blades for this application were selected, in order to find the optimum performance. Nowadays, modern wind turbines are using blades with multi airfoils at different sections. SST-K-ω model with different wind speed at large scale...

متن کامل

Design and Implementation of the Rotor Blades of Small Horizontal Axis Wind Turbine

Since the renewable resources of energy have become extremely important, especially wind energy, scientists have begun to modify the design of the wind turbine components, mainly rotor blades. Aerodynamic design considered a major research field related to power production of a small horizontal wind turbine, especially in low wind speed locations. This study displays an approach to the selectio...

متن کامل

Parametric study of a novel oscillatory wind turbine

Clean energy harvesting and usage has gained considerable attention in the last few decades. While the horizontal axis wind turbines have been used extensively, they have certain defects and functional limitations. In the present paper, a novel oscillatory wind turbine is proposed. The conceptual design of the new turbine together with its configuration is explained. Dynamical equations of the ...

متن کامل

Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor

This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI[1] responses of HAWT[2]. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. ...

متن کامل

A Novel Dual-Rotor Turbine for Increased Wind Energy Capture

Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints. Aerodynamic interactions between turbines in a wind farm also lead to significant loss of wind farm efficiency. A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these two losses. A DRWT is designed that uses an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009